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An extension is given for the Fourier expansion method with the contrac- 
t ion technique, which was introduced by Balescu for quantum statistical 
systems. This is attained by introducing a diagrammatic method with a 
concept of moving contraction. Then the hierarchy equation for the 
contracted Fourier coefficient of the Wigner distribution function is 
obtained. As an application, a generalized master equation involving 
n-body collision effects and quantum statistical effects is also derived. 

KEY W O R D S  : Wigner distribution function ; Fourier expansion method ; 
quantum statistical hierarchy equation; diagrammatic method; movable 
and unmovable contractions. 

1. I N T R O D U C T I O N  

T h e  p u r p o s e  o f  th i s  p a p e r  is to  g ive  a n  e x t e n s i o n  o f  t he  F o u r i e r  e x p a n s i o n  

m e t h o d  in n o n e q u i l i b r i u m  s ta t i s t i ca l  phys ics ,  w h i c h  h a s  b e e n  d e v e l o p e d  by  

P r i g o g i n e  a n d  Ba l e s cu  (1~ f o r  c lass ica l  s y s t e m s  a n d  b y  B a l e s c u  (2~ f o r  q u a n t u m  

s ta t i s t i ca l  sys t ems .  

z Depar tment  of Physics, Tokyo Gakugei University, Koganei-shi, Tokyo, Japan. 
2 Depar tment  of Physics, Science University of Tokyo, Kagurazaka, Shinjuku-ku, 

Tokyo, Japan. 
3 Depar tment  of Physics, Saitama University, Urawa-shi, Saitama, Japan. 

359 

�9 1976 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publica- 
tion may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, 
mechanical, photocopying, microfilming, recording, or otherwise, without written permission of the publisher. 



360 Nobuhiko Mishima, Tomio Yamakoshi Petrosky, and Miwae Yarnazaki 

In treating the long-time behavior of nonequilibrium systems by perturba- 
tion theory, the terms corresponding to the diagonal transition play essential 
roles because of their growing contributions with time. a-3~ In these diagonal 
transitions, there exists a peculiar transition originating from the quantum 
statistics. We must, therefore, build up our quantum statistical theory so as 
to take these effects explicitly into account in the Fourier expansion method. 
This problem was first discussed by Balescu (2~ under the concept of "con- 
traction" in the Fourier coefficients of the Wigner distribution function, and 
he has tried to get a basic quantum statistical hierarchy equation for these 
Fourier coefficients. However, in his arguments to derive the hierarchy 
equation there are inconsistencies and his results are unsatisfactory. 

The aim of this paper is to accomplish what Balescu has tried and to 
give the basic hierarchy equation in the proper form. In this equation the 
quantum statistical effects are incorporated as effective vertices, and by this 
equation the diagonal transition originating from the quantum statistics can 
be treated directly in the perturbation theory. We will derive this equation by 
introducing a diagrammatic method with a concept of the moving contrac- 
tion. Details of the method are given in Section 2 and the appendix. Section 
3 is devoted to an application of our basic hierarchy equation. There we 
derive a generalized master equation of the momentum distribution function 
involving up to n-body collision and any order of the quantum statistical 
effects. 

Here we explain briefly the basic formalism for our problem. We 
consider a system of N identical particles which obeys the quantum statistics 
and is enclosed in a box of volume (27r)3f2 with the usual periodic boundary 
conditions. The Hamiltonian of the system is assumed to be a sum of single- 
particle energies and of the pair potentials, 

,< 

H = 2m + V ( I , ;  - r . I )  (1)  

where m is the mass of a particle, and Pj and rj are the momentum and 
position operators of particle j, respectively. 

The density matrix describing the system is defined by the momentum 
representation as 

p<N~(p~ .... , PN; P~', .... P~ ' ;  t )  = w~W~(P~,..., PN,  t)W~ (Pz ,..., PN , t )  
i 

(2) 

where 'F:(P1,..[, PN; t) is the symmetrized or antisymmetrized wave function 
for the state of the Hamiltonian (1), and w~ is the statistical weight of the 
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i th  state of  an 
governed by the 

ensemble. (4~ The t ime evolut ion of the density matr ix  is 
well-known von N e u m a n n  equat ion,  i.e., 

.... , P , ;  P~',..., PN'; t) 

= -  Tm]"  ~ 1  ..... e = ; e l ' ,  .... e= ' ; t )  h j 1,2m 

�9 N 

+ ~ - 1  ~, {v( / ) / ' (e~ ..... Pj, . . . ,  P ,  ..... e=;  

e l ' ,  .... P /  - h t , . . . , P j  + ht, .... P='; t) 

- v(l)p(m(P1 ..... Pj  + hi, .... P,~ - hi, .... P~;  

P~',..., P / ,  .... P~', .... P~ ' ;  t)) (3) 

where v(l) is the Fourier  t ransform of  V(r) ,  

v(l) = [1/(2~r) 3] f dr V(r )  exp[ilr] (4) 

In order  to give a unified description for  both  the classical and quan tum 
systems, we introduce the normal ized Wigner  distr ibution function, (5~ which 
is defined by 

f~  W(x, p ;  t) 

_- : exo  ,,x, 

x p(N~ p l  + 2 k l  .... ,PN + ~ k ~ ; P l  - ~ k l  ..... P N - -  ~ k N ; t  (5) 

where x -= {x~ ..... XN} a n d p  - {pl .... , PN} are defined as whole sets of  variables 
in the quan tum phase space of  the N-part icle system. F rom (3) and (5) it 
follows tha t fN ~v satisfies the quan tum Liouville equation,  i.e., 

N f N  + --~-~xjfN - - ~  V + - - - -  -- X= -- - - - -  j m j<~ 2i ?pj 2i c3p~ 

- V xj 2i ~p~- x .  + ~ ~ fN TM = 0 (6) 

The reduced distr ibution functions for  a set o f  s particles are defined as 
usual (1~ in the limit o f  f2 -+  oe by 

f=W(xl ..... x=;pl  ..... 17=; t )  = ( N  s ) !  (dp)N-~Nw 

r ..... p=; t) = f ( d x y  f (apY-~f= w (7) 

f n=(x~ ..... x=; t) = (N  - s)t (dx)=-= (dP)~fNw 
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According to the Fourier expansion method of Prigogine and Balescu, (n 
we introduce the Fourier coefficient Pkl ..... kr(Pl ..... PrlPr+l .... ,PN; t) of the 
Wigner distribution function in the following form: 

WX " f f, ,  ( ,  p ,  t) = ( 8 ~ a )  -~  oo(I . . .  ; t )  

[( ',)1 2 '  pk,(Pj[--. ; t )  exp ikj x j  - m t + f~-~J kj 

N 
+ Z Z' ; t) 

"~ < J k~ kf 
k~+kt#O 

N 

+ f~-~ Z Z ' P k . - k ( P " P ' I  " ' ' ; t )  
i<J k 

X e x p [ i k { ( x ~ - x j ) ( P ~ -  

where the prime over a summation sign indicates the exclusion of k = 0. 
By comparing this expansion with (5), we get the relation between the 
Fourier coefficient and the density matrix as 

Ok1 ..... k~(Pl ..... PrIP~ + I,..., Pu; t)  exp - i ~ k jp j  
Y 

( = ~)vp<N) Pi  + ~ k i , . . . , p r  + ~ k ~ , P r + i  ..... Pi~; 

) p ,  - ~ k l  .... ,p~ - ~k~ ,p~+~, . . . , p s ;  t (9) 

where p is the number of independent wave vectors in k,,..., k~. The momen- 
tum arguments on the left-hand side of the bar in pk~ ..... ~r indicate those of 
the particles having nonzero wave vectors. The arguments on the right- 
hand side of  the bar [we indicate them by dots in (8)] indicate those of the 
particles having zero wave vectors. The propagator e x p [ - i k ( p / m ) t ]  is 
introduced to treat the yon Neumann equation (3) in the interaction repre- 
sentation. In the Fourier coefficient, the nonzero wave vector kj pertains to 
the coordinate xj in the Wigner distribution function and is related to the 
spatial correlation of the particles. Under the assumption that the coefficients 
pk ...... k~ do not depend explicitly on N or ~, the expansion (8) ensures a 
regular behavior of the reduced functions (7) in the thermodynamic limit, 
i.e., N--+ m and g)--> oo with finite number density, c -~ N/8~ra~ = const. 

From (3) and (9), and by the use of the displacement operator 
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exp(hk ~/~p) [which means exp(hk ~/Sp)F(p) = F(p + hk), where F(p) is an 
arbitrary function], it follows that pkl ..... kr satisfies the hierarchy equation, 

8 - / P + ( P ;  t)  = exp i + . . .  t 
j<n 1 

x @ ( l ) e x p [ _ h  <+)3_ e x p [ -  ~ 

x e x p [ -  i(kl&+...m +(k,  + 1)~+...m +(k~ - 1)~'~ 

+ . . .  +k~m t ~-~' 

where 
D}~)= +_Dj~, D/~ -~ O/#pj - O/~p, (11) 

The notation {k} is used as an abbreviation for the set kl,..., k~, and {k}' is 
used for the same set with the exclusion of kj and k~. The exponents v and 
v' are the numbers of independent wave vectors in p on the right- and left- 
hand sides, respectively. The formal solution of (10), which is referred to as 
the "iterated solution" or the "iterated expansion" in the following sections, 
is obtained by iterations of a set of the equivalent integral equations with 
the appropriate initial conditions at t = 0. 

We remark here that Eq. (10) has the same form as the equation for the 
quantum system of distinguishable particle (+ and the quantum statistical 
effects are contained in P~k~(P; t). In obtaining the solution of (10), if no 
special consideration is paid to the contribution of the diagonal transitions 
originating in the quantum statistical effects, these contributions may be 
overlooked. Thus it is very useful to reformulate this equation so that these 
effects are taken explicitly from p{k}(p; t) in the form of effective interactions. 
In the next section, we will give a method to derive the quantum statistical 
hierarchy equation. 

2. DERIVATION OF Q U A N T U M  STATISTICAL HIERARCHY 
EQUATION 

To explain how the quantum statistical effects appear in this formalism, 
we take as an example the Fourier coefficient p k l , k 2 ( p l  , PZ[Pa  . . . . .  PN; t) with 
kz + k2 # 0. From (9), we have 

Pk l , k2 (P l  , P z l P a  , ' " ,  P N  ; t )  

= f22p <m pj. + ~ k l ,  P2 + ~ k2, Pa, ..., P~ ; 

Pl - ~zkl,P2 - ~k2 ,p3  ..... p,v;t exp i(klpj. + k2p~) m (12) 
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In (12), ifp~ + (h/2)kx = p2 - (h/2)ka, we can rewrite the right-hand side as 

( fi 2 h k2) 8~\P2 - Pl - kl  - 

x f~2p~N> Pl + ~ 2 k l , P 2 + ~ k 2 , . . . ; p 2 - h k ~ - ~ k 2 , P l  + ~ k l  .... ; t  

where the notation ~ (p )  indicates the product of three Kronecker deltas 
~,~o3~,~o~,~o. Interchanging the momentum argument P2 - hk~ - �89 with 
p~ + �89 in p ~m of (13), we can rewrite it with (9) as 

( ] h h --~klD2~ Okl+k2(P21Pl,Pa .... ; t) (14) 0 f ~  P 2 - P ~ - ~ k l  - ~ k 2  exp 

where the statistical factor 0 is equal to + 1 for bosons and - 1 for fermions. 
This example shows that, for certain values of momenta, the spatial cor- 
relation in pk~,k~ is reduced to the lower one in Pkl +k~. This reduction is the 
quantum statistical effect called "contraction."<2~ Similar contractions occur 
in (12) for the cases ofp~ - (h/2)kt  = p~ + ( h / 2 ) k  2 with kt + k2 # 0 and 
ofp~ = pz with kl + k2 = 0. 

The general contractions in Pk . . . . . .  k r are achieved in the following ways: 
First, the contraction between any two particles having nonzero wave 
vectors in pk~ . . . . .  k r by the following formulas. 

(i) For kj + k~ # 0, 

Vk,,k.,{k~(P~, P . ,  { P ) I . . - )  = A~.k.,{k}(P,, p . ,  (P}I ' '  ") 

+ 0 ~ 3  '~ p j - p ~ -  ~ k j - ~ k , ~  

• exp[--hk~Dj~]pk~+k, ,~(p~,{p) lp  ..... ) 

+ 0 ~  p ~ - p ~ - ~ k ~ - - ~ k ~  

x exp - ~  k~D~ Pk~+~,,~k?(P~, {P}IP~,'") (15a) 

(ii) For  kj + k,~ = 0, 

= ~;,, .~,,~(e~, p~,  (r}l . - . )  

+ OF~ 3'~(p/ - p = ) e x p [ - h  k~Dy~]p~k~({p)]p/,p ) (15b) ..... 
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where the prime on p indicates that the contractible parts between the wave 
vectors kj and k~ in p are removed. We continue this procedure for the 
remaining wave vectors until all contractible parts are separated. Finally, 
we can express p in terms of a new Fourier coefficient fi, which is defined as 
having no contractible parts in O. The coefficients po and Pk, contain no 
contractible parts, so 

fio(JPl . . . . .  PN) = Po(lPl  . . . . .  Px )  

?k,(P:lPz ..... Ps - I ,P j+I  ..... Px) = Pk,(P:lPl .... , P j - I , P j + I  ..... PN) (16) 
TO see the role of the contraction in the perturbation theory, we consider, 

as an example, the second-order contribution to po(]pl ,p2 , . . . ; t )  from 
Pl+l',-l-l '(p,, P21-.. ;0) in the iterated expansion of (10), that is, 

J/ (i/h)2f] -2 E dr1 dt2{v(l) exp[�89 '] 
I ' 

- v(l) exp[-�89 

x e x p [ - i l ( p l  - P 2 ) ( q  - t2)/m]{v(l') 
1 ~ ( + )  x exp[-z -h l  D12 ] - v(l')exp[-�89 

x e x p [ - i ( l  + l ' ) (pl  - P2)t~/m]P/+I,,-t-F(Pl,P21...; 0) (17) 

This term appears to be a nondiagonal transition, but it contains implicitly 
the diagonal transition due to the quantum statistical effect and its contribu- 
tion grows with time. That is, the Kronecker delta of the contracted part 
Of 2 ~ ( p l  -P~)Oo(IP~,P2 .... ;0) in Ot+l,,-t-t, restricts the momentum argu- 
ments to be zero in the exponent of the rightmost propagator exp[ - i ( !  + l ')  
(p~ - p2)t2/m] in (17), and hence by the well-known asymptotic formula, 

e x p [ i l P t ] f ~ d h t ~ e x p [ - i l P h ]  = i [ l ( p / ; ~ ; - - ~ ] '  ~ --> 0+  (18) 

this contracted part gives the contribution proportional to the macroscopi~ 
time t. 

Due to the existence of these implicit diagonal transitions as in this 
example, it is much more convenient to construct the hierarchy equation for 
~(k}(p; t) rather than p(k}(p; t). In P(k}(p; t) all parts bringing these diagonal 
transitions are separated out and this makes it possible to treat directly these 
diagonal transitions in the perturbation theory. This equation is just the 
quantum statistical hierarchy equation, and, as will be discussed soon, it 
will be given in the following form : 

N 

@/?t) #(k}(p; t) = E E exp[i E k,pJ/m]({k}lJ//j~[{k'}) 
j < n  {k'} i 

x e x p [ - i  ~, k/pzt/m]f~-~'Z~,}(p; t)  (19) 
I 
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where the vertices ({k}]d{j~ I{k'}) are effective interactions, which come from 
the original interactions in (10) and the quantum statistical effects. 

Now we discuss the derivation of this equation by a method based on the 
use of a diagrammatic method to treat the iterated expansion of (10) with the 
contraction. By the systematic use of the diagrammatic method, we can 
avoid any confusion due to the great number of combinations of the particles 
to be contracted, and, further, based on the concept of the moving contrac- 
tion, we can avoid the double counting of the diagonal transitions due to the 
quantum statistical effects. We explain the method here, and give the details 
in the appendix. 

First, we perform the contractions at the initial states, p~k}(P; 0), in the 
iterated solution of (10) and we let the displacement operators in the vertex 
parts of (10) act on the Kronecker deltas appearing in the contractions. 
[See (A.3) in the appendix.] Then, we find that some of the contractions 
may be regarded as being performed at the intermediate states over these 
vertices. [See (A.5) and (A.6) in the appendix.] We refer to this fact by 
saying that " the  contractions move over the vertices." Further, we let all 
contractions move over the vertices as successively as possible as they move 
toward the final state. In this process, we find that the unmovable contrac- 
tions are of finite number and so the procedure of successive contractions can 
be closed, as will be seen in the appendix. Recalling here that fi(k}(p; t) 
contains no contractible parts, we remove the terms in which any one of the 
contractions could move over all vertices. Then, the sum of the remaining 
terms is just t~k~(P; t) which has to be coincident with the iterated expansion 
of (19). By comparing them we can finally obtain the expressions of the 
vertices ({k}]dgj, [{k'}), which consist of the original vertices in (10) and the 
Kronecker deltas of the contraction being unmovable over these original 
vertices. 

We list the new vertices obtained by the above procedure in Table I. In 
this table the new vertices are classified according to the number of nonzero 
wave vectors on both sides of them. We find 11 elementary types of vertices. 
The vertices a through J~ correspond to those in classical systems, ~1~ but 
contain the quantum statistical effects. The vertex ~ describes the forward 
collision. The vertices ~ through l are peculiar to the quantum statistics 
and they show the characteristic property that three or four particles can be 
affected through a single effective vertex. 4 

We refer here to the density dependence of each vertex in Table I. 
In physical problems, we are interested in the reduced distribution functions 
(7), which depend on the finite number of variables. Thus we have to regard 
that all momentum arguments except those of the fixed particles in the 

4 We remark that the results of the effective vertices given by Balescu in Ref. 2 contain 
errors, and further the vertices k and i in Table I have been overlooked. 
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vertices should be summed in actual treatments. After such a reduction, we 
see that each vertex brings two kinds of density dependence, which come 
from different origins. The first is due to the fact that the destruction of the 
spatial correlation of a particle through the collision with any one of N 
particles occurs accompanied by a special wave vector transfer, so that the 
probability of the process is proportional to N and f2 -~. We list this kind of 
density dependence of each vertex in Table I. The second is due to the quantum 
statistical effects, namely the fact that the contracted terms always contain 
the Kronecker delta of momenta together with the summation over particles. 
For  example, ~ ~(p~ - p~ + (h/2)kl)  in the vertex a leads to a factor h3c 
after the summation over the momentum as 

- ~ k l  ,,~ h~c (20) 

This density dependence is related to the dimensionless parameter /~B3c, 
where ,~B is the mean de Broglie wavelength. 

3. M A S T E R  E Q U A T I O N  

As an application of Eq. (19), we will discuss briefly a general method to 
derive a generalized master equation of the momentum distribution function 
Cu(Pl ,..., PN; t) describing the system in which multiple collisions cannot be 
neglected and the mean de Broglie wavelength is not small as compared with 
the range of interaction. 

Equation (19) has the same structure as the classical one, so we can 
proceed to obtain the master equation by the use of the diagrammatic 
method of Prigogine and Balescu/1~ In this method, each propagator of the 
particles having nonzero wave vector is indicated by a solid line running 
to left from right (this means that time is going to left from right), which 
is labeled with the index of the particle. Concerning particles having zero 
wave vectors, we draw nothing. Each of the 11 types of interaction 
({k}ld//j~l{k'}) in (19) is represented by a "ver tex"  connecting lines, which 
is shown in Table I. 

In the iterated solution of (19), the topological structures of the diagrams 
correspond well with their time dependence, as is well known. (v From (7), 
(8), and (16), we see that 

r ..... p~; t) = #0(]Pl .... , Pu; t) (21) 

so we mention here only the time dependences of the diagrams relating to 
#0(P; t). The content of a diagram is separated into two regions as follows: 
The first is the "diagonal region," where, if it consists of l "diagonal frag- 
ments," it gives rise to the time dependence t ~/l !. The second is the "destruc- 
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1,, ,  

3 '  
, 3 "  

<55<>1 
2 2 '  " " . 

Fig. 1. (a) Diagonal region; (a') diagonal fragment. (b) Destruction region; (b') destruc- 
tion fragment. 

tion region," consisting of only one "destruction fragment," which does 
not give rise to the growing contribution with time. An example of a diagram 
consisting of three diagonal fragments accompanied by a destruction frag- 
ment is shown in Fig. 1. 

Now we discuss the parameters characterizing the system to classify 
the diagrams in the iterated expansion of (19). In our system, the density c is 
a good parameter and, as we have seen, there are two kinds of density 
dependences which come from the vertices in Table I. The first is due to the 
collision and it brings about the factor c m- a if rn particles are encountered 
in their interaction ranges at the same time. The second is the h3c dependence 
due to the quantum statistical effects through the contraction, and we will 
take full account of these quantum effects. Further, in treating the long-time 
behavior of the system as compared with the duration of a collision, time t 
becomes another parameter to classify the expanded terms of (19). As has 
been discussed above, a time factor t is brought in through a diagonal 
fragment. So if the diagonal fragment contains rn particles, it gives rise to a 
contribution of the order (cm- l t ) (h3c)  s, where s = 0, 1, 2 .... Furthermore, 
corresponding to the existence of r-body correlation at the initial time, 
i.e., t&~ ..... k~(p; 0) ~ 0, the extra factor c~(hac) ~ is brought in through the 
destruction fragment, where u >_ r - 1. Consequently, to get our master 
equation involving up to n-body collisions, we sum the diagrams of the 
order 

(c t )q l (e2 t )% . . .  ( c ~ - l t ) % _ i c . ( h 3 c ) S  (22) 

in the iterated expansion of (19). Here qj is the number of diagonal fragments 
containing j + 1 particles in the diagram, where ql,-.., q , -  1 = 0, 1, 2 ..... An 
example of these diagrams is shown in Fig. l, which has the order of 
(ct)(c2t)~c a except for the hac dependence. 

We can now derive our quantum statistical master equation from (19) 
in accordance with the general procedure developed by Prigogine and his 
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1 C Z ) .  C22:X:~ § C2:YZZZX::~ . . . .  ~ CZZX: - . .  :X:ZD + . . .  
2 

2 

. g 4  -- �9 e : : 5 ,  �9 �9 
2 

Fig. 2. Sum of diagonal fragments. 

+ ~ q- . . , 

collaborators (1'2s) for classical systems. The derivation 1s as follows. First, 
we write down all diagrams of the order (22) relating to fi0(P; t) in the 
iterated solution of (19) and classify them into two groups according to 
whether or not they contain the diagonal fragment. In the former group, 
we factor out the sum of all of the diagonal fragments located at the leftmost 
side of each diagram, and then we find that the remaining part is just #0. 
After the time derivative is taken the diagrams belonging to the latter group 
vanish because they have no time dependence. Thus, we can obtain the 
quantum statistical master equation in the form 

(o/ot)~(p; t) = ~ ~em4N(p; t) (23) 
m = 2  

where ~-90 m is the sum of the terms corresponding to all diagonal fragments 
(except the time factor) of the order c m- 1(h3c)~. 

The first few diagonal fragments appearing in the kernel of the master 
equation 5~ are shown in Fig. 2. 

In order to see how the quantum statistical effects appear in our 
formalism, we give here the expression of }he master equation (23) for the 
simple case of m = 2, 3. The kernel of our master equation can contain an 
arbitrary number of vertices ~, as shown in Fig. 2, because it is irrelevant to 
the parameters characterizing our system. Then, by introducing the prop- 
agator G2 represented in diagram form in Fig. 3b, we get the following 
result for 5~2: 

N 

5~2 = ~" (0]~12G2a~I0) (24) 

where the two-body propagator G 2 satisfies the integral equation 

G2 = G f  ) + G~2)~12G2 (25) 
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(a) ~ 2 = ~- 
I<2 

(b) 2 2 2 e 2 

Fig. 3. (a) Compact expression of the kernel ~2. (b) Two-body propagator G2. 

The two-body free propagator G(o 2~ is defined by 

1 
<kl, k~hG~02~lk'l, k2'> = .{(kx,,~ + k2p2)/m - i,7} a~(kl - k~')a~(k2 - k ; )  

(26) 

which appears after integrating over times in the iterated expansion of (19) 
by the use of the asymptotic formula (18). The corresponding diagrams to 
(24) and (25) are shown in Fig. 3. Similarly, we can obtain for ~3 

N 

1,2,8 

+ (O(   G2 13G2a 210) 

+ [(Of~2G2cl~3G3913G2d~210) + (O[e12G2~l~G~b~3G2d23tO) 

+ (Old12G2d~3G3612G2d1210) + (O{~2G2d~oG3b~2G2a2~{O) 

+ (OJ~2GjlI3G3623G2a~210) + (OJ~2GjI~3G3623G2a1310) 

+ (O[~12G~l~G~)~G~1210)  

+ (five other terms in which the subscripts to the vertices 
are changed as in the preceding terms)]} (27) 

where the three-body propagator Ga satisfies the integral equation 

Ga = G~ a~ + G(0a)(~ + ~za + ~la)Ga (28) 

and the three-body free propagator G~o a~ is defined by 

<kl,  k2,  kalG<oa>lk~ ', k2', k~ ' )  

1 
= i { (k lp l  + k~p~ + kapa)/m - i~?} a':(k~ - k~')a~(k2 - k2')aZ(ka - ka') 

(29) 

The diagrams corresponding to (27) and (28) are shown in Fig. 4. The kernel 
5e~ contains the vertices if, ~, and.7 peculiar to the quantum statistics. 
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N[133   
1<2<3  2 " ~ ' ~ - ~ "  7 

f 1 1 1 1 1 1 + ~ 2 ~  _~ ~ I  I I 12 3 3 + 

+(other four diagrams)+ 

1 1 1 1 1 

2 2 Z 2 +~+ (b)  + 
3 3 3 

Fig. 4, (a) Compact expression of the kernel ~3. (b) Three-body propagator G3. 

4. S U M M A R Y  A N D  D I S C U S S I O N  

We started from the hierarchy equation (10), which is satisfied by the 
Fourier coefficient p(k}(p; t) for the Wigner distribution function. The new 
Fourier coefficient t~(k}(P; t) was obtained from p(k}(p; t) by applying the 
contraction technique which was first used by Balescu and improved in this 
paper. The new hierarchy equation for P~k}(p; t) is derived in (19), in which 
the quantum statistical effects originating from the diagonal transition are 
incorporated into the effective vertices <{k}l~/j,[{k'}>. 

Our method of obtaining Y~k}(p; t) and the equation for Y(k}(P; t) is 
characterized by the use of diagrams for the contraction procedure and also 
by the adoption of the concept of the moving contraction. By our method, 
complications in the contraction procedure are much reduced and any 
confusion of double counting for the diagonal transitions can be excluded 
systematically. 

In our formalism, the main parts of the quantum statistical effects, 
which contribute to the long-time behavior of the system, are included in 
the effective vertices <{k}lJ/,, [{k'}>. This is a general and favorable feature 
in that we can treat such quantum statistical effects directly by the perturba- 
tion theory and can take account of them into the calculations up to any. 
desirable order. 

Finally, we mention the recent work of the Brussels school. In particular, 
a general theory of subdynamics has been given by Prigogine et aL (8) and its 
extension has been given by Balescu for the quantum statistical systems in 
the cluster expansion formalism. (9) In this work, the quantum statistical 
effects are taken into account by constructing the effective Liouville operator 
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with the symmetrization operator on the frame of the cluster expansion. It 
is of interest to investigate the treatment of the quantum statistical effects 
in the formalism based on the cluster expansion in relation to that in our 
formalism based on the Fourier expansion method. This problem will be 
discussed elsewhere. 

A P P E N D I X  

In this appendix we give details of the diagrammatic method used to 
derive Eq. (19) with the effective vertices ( { k } l ~ t { k ' } )  from Eq. (10), and 
we show how the calculation can be done systematically without double 
counting for the diagonal transition due to the quantum statistical effects. 
(We put h = 1 and m = 1 for simplicity.) 

A.1. In t roduc t ion  of  D iagram 

First we start with the diagrammatic representation for terms of the 
iterated expansion of (10). We take as an example the first-order terms for 
e x p [ -  i k l p l t  ]Okl(Pl IP2 .... ; t )  connecting to Okl + J , - t (p l ,  P2[... ; 0), i.e., 

if2 -~ dtz e x p [ - i k ~ p ~ ( t  - h)] 

x {v(l) exp[-�89 +] - v(I) exp[-�89 

x exp{- i [ (k l  + l ) p l  - l p2] t } f2 -1pk l+ t_ t (p l , p2[  . . . ;  0) (A.1) 

This is represented in Fig. 5. That  is, we draw a horizontal solid line for each 
propagator exp[ - ik jp j ( t '  - t")] and put the argument pj - �89 on this 
solid line. For  the particles having zero wave vectors we draw nothing in 
general, but if necessary, we draw broken horizontal lines for them relating 
to the interaction or the contraction. The interactions v(1) exp[--1-21D~ 2<~=>] are 
represented by vertical wavy lines with an arrow connecting two horizontal 
lines and labeled with the notation ( + )  [ ( - ) ]  corresponding to the operator 
D <+> [the operator D(->]. The orientation of the arrow is determined by the 

- t - -  - ~ t  

Fig. 5. Diagrams corresponding to (A.1). 
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iol_ 21__ i,ci lC~i_ �89 kn) 1 1 . .  p j - ~  k j  ,,, p~ n j - ~  i<~ .... p~ 

j 1 
~-~l<nl Pn" Pn~'~ "kn IOn- �89 +kn) Pn-2 l<nl Pn 

(a) (b) (c) 
Fig. 6, Diagrams for contractions between particles j and n. 

order of the subscripts jn of the operators t~(~) ~s,~ as toward the part iclej  from 
the particle n. On the wavy line we put the wave vector -1 /2  such that the 
total wave vector is conserved from the left-hand side of the wavy line to 
the right-hand side. 

A.2. Diagram for Contraction 
Next, by formulas (15a) and (15b), the contractions for pks,~,,{kl(ps,p~, 

{P}I " ' ' )  are represented by the following rules: We draw vertical solid 
lines with an arrow connecting two horizontal lines for the contractions 
between the particles j and n. (See Fig. 6.) The orientation of the arrow is 
determined by the order of the subscripts jn of Ds, in (15a) and (15b) as 
toward j from n. We put the wave vector on the vertical solid line so that 
the total wave vector is conserved from the left-hand side of the vertical line 
to the right-hand side. The diagrams corresponding to the second and third 
terms in (lSa) and the second term in (15b) are shown in (a), (b), and (c) of 
Fig. 6, respectively. There, the wave vector of the vertical solid line is just 
the one in the displacement operator, and the argument of the Kronecker 
delta in (15) is the difference between the arguments on the two horizontal 
lines of the right-hand side. 

For  the case of the contraction including more than two particles, the 
contraction can be performed by the successive use of formulas (15a) and 
(15b). In our diagrammatic representation, the vertical lines are arranged to 
right from left in accordance with the order of the contractions of two 
particles. (See Fig. 7.) 

Here, we remark that the difference of the order in successive contrac- 

, ~-~k~ ~-�89 2 ) ,  ~-�89 ~-~k~l ~- ~(k,*k~.+.k~) 

[: T- l k 3  1 Tk~ 
1 1 k ~-T k~ R R-~- ~ P~ 

(a) (b) 
Fig. 7. Diagrams leading to equivalent contractions for pkzk2k a. 
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i 

Fig. 8. Diagrams leading to equivalent contractions for Pkik2kak4. 

tions does not always lead to a different result. That  is, the two types of 
diagrams (a) and (b) in Fig. 7 give the same expression, 

02f~2 ~'~(P~ - P2 - �89 - ~k2) 8~(p2 - Pa - �89 - -}k3)exp[-�89 

x e x p [ -  �89 +,2 +k3(Pl[P2, Pa .... ) (A.2) 

and lead to equivalent contractions. Thus, it is necessary to take account of 
either one of them. For the general contraction including more than three 
particles, we can still use the above criterion for any two successive contrac- 
tions. For example, as is easily seen, all diagram in Fig. 8 lead to the equi- 
valent contraction for pklk2kak~(pi, P2, P3,  P4[ " ' ") to Dk 1 +k2 +ka +k4(pl[P~,  
P3, P4 .... ) and only one of them has to be taken into account. 

A.3. Der iva t ion  of  E f fec t ive  Ver t ices  

We now illustrate how the effective vertices of (19) can be derived by the 
use of  the diagrammatic method. As has been discussed in Section 2, the 
general procedure is as follows: To take out the part  corresponding to 
P{k}(p; t) from the iterated expansion (10) for p{k~(p; t), the contractions are 
performed at the initial states p~k'~(p; 0), and these contractions are moved, 
if possible, over the original vertices toward the final state. Then, if we get 
rid of  the terms having the contraction at the final state, we can obtain just 
#~,}(p; t ) ,  which must be coincident with the iterated expansion of (19) with 
the effective vertices. 

As an example, we first take the diagram shown in Fig. 9, which is the 
first-order term for pklk2(pl , P21... ; t )  connecting to 0.1  +k2(lvllP2 . . . .  ; 0) with 

Pl -�89247 k~) 

T , 1 -)- k2 
Pr E-  7kz R 

1+) p2- ~-1<2 
Fig. 9. One of the effective vertices. 
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a single contract ion.  F r o m  our  rule, the explicit expression of  this d iagram 
can be writ ten as 

i ~ -  1 dtl e x p [ -  i ( k lp l  + k2p2)(t - t~)]v(k~) 

x ex ,,rvt-~lk2D ~+nr2 j exp[ - i (k~p~  + k2p~)h] 

x 0~  8~(pl - p~ - �89 - �89 exp[--�89 .... ; O) 

(1 .3)  

The  contract ion in (A.3) does not  become any one of  the contract ion per- 
fo rmed  in Pk~k~(p~,P~l .... ; t )  af ter  opera t ion  of  the displacement  opera tor ;  
therefore we cannot  regard tha t  this contract ion moves over  the vertex. 
This contract ion is incorpora ted  into the effective vertex. We rewrite (A.3) as 

/ dt~ e x p [ - i ( k l p ~  + k2p2)(t - t~)] 

N 

x {if2-Zv(k2)O ~ 8~(pt - p,  - �89 exp{-�89 
T 

exp[ - i(k~ + k2)plt~]f2p,~ +*~(PzlP~, P~,... ; 0) (A.4) 

then the expression in the curly bracket  in (A.4) is just  contr ibut ion to the 
effective ver tex / ;  in Table  I. 

Next,  we take as an example  the second-order  terms in Fig. 10 to illustrate 
the movab le  contract ion over  the vertex. This is expressed as 

i~a-~j, dqj. dt. exp[-i(k~p~ + k.p~. + k.p~)(t- h)] 
v 

x v(k~) ex,,r ak D <+>~ I - ' L - -  2 2 r2  J 

x e x p [ - i ( k z p ~  + kapa + k~p,)(tl  - tz)]v(k~) 

x ex "rr,t-• ~D <+)~,a ~ exp[i{k~p~ + (k~ + k~)p,}tz] 

x 0f~ 8~(p~ - p~ - ~k~ - �89 - �89 expf - �89  + ka)D~,] 

X ~'~/5k1 + ko + ~ ( P l  I P~, Pa, P ..... ; 0) (A.5) 

(+) 

(+) 
Fig. 10. Example of a movable contraction (before being moved). 
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P, -~-(kl *k2*k ~ ) 

Pr ~r--2- 2 ~r 

-7k2 B-Y k2 P2 
(+) 

(+) 

Fig. 11. Example of a movable contraction (after being moved). 

If  we rewrite (A.5) in the form 

i2f2 -2 dtl dta e x p [ - i ( k l p l  + k2p2 + kapa)(t - t~)] 

x v(k2) exp[- �89 )] 

x e x p [ - i ( k l p ~  + kspz  + k~p,)(t~ - t2)] 

x Of~$~(pz - Pr - -  � 8 9  �89 e x p [ - � 8 9  

x v(ks)exp[- �89  )] exp[ - i (k l  + k2 + k3)pzt2] 

• f~Pk~+k2+k3(P~[P2,Pa,P: .... ; 0) (A.6) 

this term can be represented by the diagram in Fig. 11. This shows that the 
contraction in (A.5) moves over the vertex and it becomes the contraction 
being performed at the intermediate state. By incorporating this contraction 
with the left-hand vertex, we again arrive at the same expression obtained 
in (A.4). 

There are not so many types of movable contractions. In Fig. 12, we 
show all types of contractions that can move over the original vertex of (10). 
Here, the pairs of diagrams are the same. 

Thus, on the basis of our diagrammatic method, we can now easily 
construct all effective vertices listed in Table I. We list in Table II the diagrams 
containing the vertex of ( + )  in (10), which correspond to the first terms in 
the expressions in Table I. 

, , ~ = " - - ~ F  

: r -+ -  = = 5 : L  = : r e :  
Fig. 12. All types of contractions that can move over the original vertex in (10). The 
interaction in figures on the upper and lower lines is the ( + )  vertex and the ( - )  vertex, 
respectively. 
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Table ii, Diagrams Corresponding to Table I = 

:p- NT z -  

a '--c'o ~ --2= 

~ '-a_o - ~  ~ ~ 

h ; ::?--~ -o - L  
I _  } 

3 r  3 

3 J ~ 1  

Only diagrams containing the (+)  vertex in (10) are shown. 
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